Описание алгоритма построения тренд-сезонной модели

Финансовая аналитика » Оценка прогнозных значений объемов выданных ипотечных кредитов » Описание алгоритма построения тренд-сезонной модели

Страница 2

При выборе наилучшего уравнения тренда необходимо рассчитать показатель детерминации R2 и F-критерий Фишера.

Показатель детерминации принимает значения от нудя до единицы и рассчитывается по формуле:

. (16)

Чем выше , тем соответственно выше вероятность, что вариация уровней временного ряда описывается этим уравнением тренда. Влияние случайного фактора оценивается как .

Формула для расчета F-критерия Фишера имеет вид:

, (17)

где n – число уровней временного ряда; m – число параметров в уравнении тренда без постоянного члена.

Согласно критерию Фишера ставится нулевая гипотеза: все параметры в уравнении тренда равны нулю. Расчетное значение F-критерия Фишера сравниваем с табличным, которое определяется по таблицам распределения Фишера для заданного уровня значимости 0,05, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно m и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n – m-1. Если расчетное значение F-критерия больше табличного, то нулевую гипотезу отклоняем и уравнение тренда является статистически значимым.

Чаше всего для оценки параметров используется метод наименьших квадратов (МНК), который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выровненных, т.е.:

, (18)

где ¾ фактические уровни; ¾ выравненные уровни по уравнению .

Остатки должны удовлетворять следующим пяти предпосылкам метода наименьших квадратов:

– случайный характер остатков;

– нулевая средняя величина остатков, не зависящая от Хt;

– гомоскедастичность – дисперсия каждого отклонения одинакова для всех значений Хt;

– отсутствие автокорреляции остатков – значения распределены независимо друг от друга;

– остатки подчинены нормальному распределению [Елисеева, 2007, с. 184 – 185].

Прежде всего, проверяется случайный характер остатков – первая предпосылка МНК. С этой целью стоится график зависимости остатков от теоретических значений результативного признака. Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и МНК оправдан, теоретические значения хорошо аппроксимируют фактические значения.

Вторая предпосылка МНК относительно нулевой средней величины остатков означает, что . Вместе с тем, несмещенность оценок параметров уравнения тренда, полученных МНК, зависит от независимости случайных остатков во времени, что также исследуется в рамках соблюдения второй предпосылки МНК. С этой целью строится график зависимости случайных остатков от фактора времени.

Наличие гетероскедастичности в остатках регрессии можно проверить с помощью рангового коэффициента Спирмэна [Эконометрика, 2006, с. 196 – 197]. Суть проверки заключается в том, что в случае гетероскедастичности абсолютные остатки коррелированы со значениями фактора Хt. Эту корреляцию можно измерять с помощью коэффициента ранговой корреляции Спирмэна:

, (21)

где d – абсолютная разность между рангами значений Хt и .

Статистическую значимость этого коэффициента можно оценить с помощью t-критерия [Эконометрика, 2006, с. 197]:

(22)

Далее нужно сравнить эту величину с табличной величиной при = 0,05 и числе степеней свободы (n – 2).

Принято считать, что если , то корреляция между значениями остатков и фактора статистически значима, то есть имеет место гетероскедастичность остатков.

Критерий Дарбина-Уотсона оценивает автокорреляцию остатков. Если автокорреляция в остатках отсутствует, то уравнение тренда пригодно для прогноза. При построении уравнения тренда предполагается, что остатки представляют собой случайные независимые величины, среднее значение которых равно нулю. Однако это предположение имеет место, если вид функции выбран правильно, иначе наблюдается автокорреляция остатков, то есть корреляционная зависимость между значениями остатков за текущий и предыдущий периоды времени.

Страницы: 1 2 3 4

Еще по теме:

Компьютерные технологии принятия управленческих решений по анализу финансового состояния банка и оценка кредитоспособности клиентов
В филиале ОАО «Сбербанк России» в г. Северске достаточно развиты компьютерные технологии, в том числе в области анализа финансового состояния банка и оценки кредитоспособности клиентов. Для современного российского финансового рынка характерно укрупнение кредитно-финансовых институтов и активное ра ...

Понятие, роль ликвидности и платежеспособности коммерческого банка
Ликвидность является одной из важнейших характеристик деятельности банка, которая свидетельствует о его надёжности и стабильности. Ликвидность коммерческого банка в самом общем понимании означает возможность банка своевременно, в полном объёме и без потерь обеспечивать выполнение своих долговых обя ...

Анализ доходов и расходов ООО «Русфинанс банк»
Анализ финансовых результатов коммерческих банков начинается с изучения объема и качества получаемых ими доходов, поскольку они являются главным фактором формирования прибыли. При этом, важное значение имеет анализ структуры и динамики доходов банка по их экономическому содержанию.[10]. По экономич ...

Главное на сайте

Copyright © 2019 - All Rights Reserved - www.banklesson.ru