Регрессионный анализ в оценке в оценке стоимости имущества заемщика

Финансовая аналитика » Формирование кредитного портфеля » Регрессионный анализ в оценке в оценке стоимости имущества заемщика

Страница 1

После выявления статистически значимых связей между переменными (в частном случае, между параметрами и ценой) с помощью методов корреляционного анализа обычно переходят к математическому описанию этих связей методами регрессионного анализа. Пусть в общем случае есть зависимая переменная, например, цена y, которая зависит от k независимых переменных , которые не являются случайными величинами. Связь между этими переменными в условиях, когда y является случайной величиной, описывает математическая модель, называемая уравнением множественной регрессии. Регрессионная модель должна аппроксимировать совокупность собранных оценщиком данных о параметрах и цене объекта оценки. Обычно истинная функциональная связь переменных неизвестна, и оценщику приходится выбирать подходящую функцию для аппроксимации . В частности, для аппроксимации широко используются полиномиальные модели. Регрессионный анализ включает решение следующих задач:

1) определение существенных параметров и выбор диапазонов их изменения;

2) выбор вида регрессионной модели ;

3) определение оценок неизвестных параметров модели;

4) проверка адекватности модели.

Проблема выбора существенных параметров. Обычно параметрами модели являются основные размеры и показатели машины, определяющие ее потребительские свойства. Например, для технологических машин это – один-два основных размера, какой-либо показатель производительности, уровень автоматизации и класс точности.

Диапазоны изменения значений параметров модели не следует принимать слишком широкими, так как это может привести к необходимости построения нелинейной модели, которая требует значительно большего количества данных для построения. Часто лучше иметь несколько более простых моделей (линейных) для разных диапазонов, чем одну нелинейную. Выбор вида регрессионной модели. Неизвестную функцию в окрестностях точки, соответствующей средним уровням каждого фактора, можно представить отрезком степенного ряда. Если интервалы варьирования факторов невелики, то можно ограничиться линейным приближением в виде линейной модели множественной регрессии:

, , (2.18)

где – неизвестные параметры модели, , – значение фактора (регрессора) в наблюдении t, , – ошибки регрессии, ./19/

Основные гипотезы линейной модели множественной регрессии:

1. , – спецификация модели.

2. – детерминированные величины. Векторы , линейно независимы в .

Страницы: 1 2

Еще по теме:

Особенности кредитования физических лиц на современном этапе
В значении кредита, предоставленного физическому лицу, иногда употребляются такие термины, как «потребительский кредит», «личный кредит», «розничный кредит». В настоящее время термин «личный кредит» (individual credit) употребляется в широком значении кредита, предоставленного банком физическому ли ...

Управление ликвидностью и платежеспособностью коммерческого банка
Анализ финансовых результатов коммерческого банка 1. Ликвидность банка – его способность своевременно и без потерь выполнять свои обязательства перед вкладчиками, кредиторами и другими клиентами. Обязательства банка складываются из реальных и условных. Для выполнения обязательств банк использует сл ...

Оценка технической эффективности отрасли за один период
Рассматривая отрасль не в динамике, имеем T=1, поэтому индекс t в уравнениях можно опустить. В предположениях (А.1)-(А.4) модель, представленная в уравнении (1), может быть оценена методом максимального правдоподобия (ММП). Подробности вычислений, включая функцию правдоподобия, можно найти у Айгнер ...

Главное на сайте

Copyright © 2020 - All Rights Reserved - www.banklesson.ru